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Abstract
We study the existence and nonexistence of global solutions to the Cauchy
problem
ut −�u = (∫

RN
|u(t, x)|σ dx

)p/σ |u|r−1u + a · � (|u|q−1u) t > 0, x ∈ RN
u(0, x) = u0(x) x ∈ RN
where u(t, x) is a scalar function, a ∈ RN,a �= 0, p � 0, q, σ, r � 1.
� is a gradient operator. The results obtained generalize the results of Aguirre
and Escobedo (J Aguirre and M Escobedo 1993 Proc. R. Soc. Edin. A 123
433–60), which do not consider the nonlocal factor in the reaction term of the
equation, and also generalize the results of Wang et al (M X Wang, S Wang
and C H Xie 1999 J. Partial Diff. Eqs. 12 201–11) which do not include the
nonlinear convection term in the equation.

PACS numbers: 02.30.−f, 02.30.Jr
Mathematics Subject Classification: 35K55, 35K57

1. Introduction

We study the existence and nonexistence of global solutions to the Cauchy problem{
ut −�u = (∫

RN
|u(t, x)|σ dx

)p/σ |u|r−1u + a · � (|u|q−1u) t > 0, x ∈ RN
u(0, x) = u0(x) x ∈ RN (1)

where u(t, x) is a scalar function, a ∈ RN,a �= 0, p � 0, q, σ, r � 1. � is a gradient
operator. More precisely, given u0(x) ∈ Ls(RN)(1 � s � ∞), let Tmax > 0 be the maximal
time of existence of the solution to problem (1). Then, as we shall prove in section 2, either
Tmax = ∞ and the solution is said to be global, or Tmax < ∞ and then

lim
t→T −

max

(‖u‖Ls (RN) + ‖u‖Lσ (RN)
) = ∞. (2)
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In the latter case we say the solution of (1) blows up in Ls(RN) ∪ Lσ (RN). Our aim is to
discuss which of these two possibilities occurs in terms of p, q, r, σ,N and u0(x).

The corresponding problem for the reaction–diffusion equation{
ut −�u = |u|p−1u t > 0, x ∈ RN
u(0, x) = u0(x) x ∈ RN (3)

is by now fairly well understood. The classical results of Fujita [1], Bandle and Levine [2]
and Weissler [3] state:

(1) if 1 < p < 1 + 2/N , then all positive solutions of (3) blow up in finite time;
(2) if p > 1 + 2/N , then global positive solutions of (3) exist if the initial value is small

enough, and blow-up in finite time occurs if it is sufficiently large.

In the critical case p = 1 + 2/N , all positive solutions blow up in finite time [4–7].
Aguirre and Escobedo [8] studied the effect of the nonlinear convection term a · �(uq) on

the global existence and blow-up of solutions. More precisely, they considered the following
Cauchy problem of generalized Burgers-type convective reaction–diffusion equation:{

ut −�u = |u|p−1u + a · � (|u|q−1u) t > 0, x ∈ RN
u(0, x) = u0(x) x ∈ RN (4)

where a ∈ RN,a �= 0. They obtained the following results:

Theorem A. Let p > 1 and q � 1 be given.

(1) If q = 1, then provided 1 < p � 1 + 2/N all positive solutions of (4) blow up in finite
time, while if p > 1 + 2/N , both global and blowing up solutions exist;

(2) If 1 < q � p � min{1 + 2/N, 1 + 2q/(N + 1)}, then all positive solutions of (4) blow up
in finite time;

(3) If q > 1 and p > min{1 + 2/N, 1 + 2q/(N + 1)}, then there exist global positive solutions
of (4). More precisely, there exists a constant C such that if ‖u0‖1 + ‖u0‖∞ � C, then the
solution of (4) is global;

(4) If q � p and p > min{1 + 2/N, 1 + 2q/(N + 1)}, then the solution of (4) with sufficiently
large initial value u0(x) � 0 blows up in finite time.

Let us explain what is meant by ‘sufficiently large’ in part (4) of theorem A. We fix a
positive function φ ∈ C2(RN) ∩ L1(RN) such that∫

RN
φ(x) dx = 1 �φ(x) � −φ(x) |� φ(x)| � Kφ(x) (5)

for some constant K > 0. Examples of such functions are

φ(x) = C exp

(
− δ

N

√
δ2 + |x|2

)

φ(x) = C(2Nδ + |x|2)−γ γ >
N

2
for any δ > 0 and the appropriate constant C > 0. A sufficient condition for the solution of
(4) to blow up is for some λ > 0 (0 < λ < 1/(2K|a|) if p = q)∫
RN
u0(x)φ(λx) dx >

{
max

{
21/(p−1)λ2/(p−1)−N, (2K|a|)1/(p−q)λ1/(p−q)−N}

q <p

21/(p−1)λ2/(p−1)−N q =p. (6)
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Another generalization for problem (3) is to consider the case of the equation including the
nonlocal factor

(∫
RN

|u(t, x)|σ dx
)p/σ

in a nonlinear reaction term. Many physics phenomena
can be described by nonlocal mathematical models, and a few authors have studied it, for
example, [9–13] and references cited therein. Recently, Wang et al [13] proved the existence
of a critical exponent of a Fujita-type for the Cauchy problem of a class of nonlocal reaction–
diffusion system. For our requirement, consider the following problem:{

ut −�u = (∫
RN
uσ (t, x) dx

)p/σ
ur t > 0, x ∈ RN

u(0, x) = u0(x) x ∈ RN (7)

where p � 0, σ, r � 1, p + r > 1, u0(x) � 0 and u0(x) ∈ Lσ (RN)∩L∞(RN). We can easily
deduce the results from [13]:

Theorem B.

(1) If 1 < p + r � 1 + 2/N + p/σ , then all positive solutions of (7) blow up in finite time;
(2) If p + r > 1 + 2/N +p/σ , then solutions of (7) blow up in finite time for sufficiently large

u0(x) > 0, while global solutions exist for sufficiently small u0(x) > 0.

The most common interpretation of (1) is to think of u as the temperature of a substance
in RN subject to a chemical reaction. Bebernes and Bressan [10] studied an ignition model
for a compressible reactive gas which is a nonlocal reaction–diffusion equation. We take the
convection effects into consideration and get model (1). So, the aim of this paper is to study
the effect of the nonlinear convection term a · � (uq), added into the right side of the equation
in problem (7), on the global existence and blow-up of solutions. The effect will be seen by
comparing the results of theorem B with ours. In another way, based on problem (4), we study
whether (1) has results similar to [8] when the nonlinear term |u|p−1u in (4) is replaced by(∫
RN

|u(t, x)|σ dx
)p/σ |u|r−1u.

In problem (1), q = 1 is a special case. Any solution u in that case can be written as

u(t, x) = v(t, x + ta)

where v is the solution of (7). In this case we see that if v blows up, then so does u and vice
versa. Therefore, the convection term a · � u has no effect on whether solutions are global or
blow up in finite time. We will see that this is not true for all values of q.

We now state our main results in the following theorem:

Theorem 1. Let p � 0, q, σ and r � 1 be given.

(1) If q = 1, then provided 1 < p + r � 1 + 2/N + p/σ , all positive solutions of (1) blow
up in finite time, while, if p + r > 1 + 2/N + p/σ , both global and blowing up solutions
exist;

(2) If q > 1 and

p + r > 1 +
p

σ
+

2

N
+ min

{
0,
(Nq −N − 1)(r − 1)

Nq

}
then there exists a constant C > 0 such that when the non-negative function u0 ∈
L1 ∩ L∞ ∩ Lσ satisfies

‖u0‖1 + ‖u0‖∞ + ‖u0‖σ � C

problem (1) has a non-negative global solution.
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(3) Let 1<q � σ(p + r)/(p+σ). If for some λ> 0 (0<λ < 1/(2K|a|) if p = 0, 1<q = r)

∫
RN
u0(x)φ(λx) dx >




max
{

2
1

p+r−1 λ
2

p+r−1 −N
, (2K|a|) 1

p+r−q λ
1

p+r−q −N
}

p > 0 1 < q � σ (p+r)
p+σ

max
{

2
1
r−1 λ

2
r−1 −N, (2K|a|) 1

r−q λ
1
r−q −N

}
p = 0 1 < q < r

2
1
r−1 λ

2
r−1 −N p = 0 1 < q = r

then the non-negative solution u of (1) blows up in finite time, where the function φ(x) is
given by (5).

We give the plan of our paper: in section 2, we prove the existence of local solutions of
(1); in section 3, we discuss the existence of global solutions and in section 4, we study the
blow-up conditions.

2. Local solutions

In this section we prove the existence and uniqueness of the local solution of (1) when the
initial function u0(x) is given in Ls(RN)∩Lσ (RN), where 1 � s � ∞. Let us now introduce
some notation. Given a function u defined on (0, T )×RN , we denote the function u(t, ·) and
its Lm(RN) norm by u(t) and ‖u(t)‖m, respectively, and define

�1(u)(t) =
∫ t

0
K(t − s) ∗ (‖u(s)‖pσ |u(s)|r−1u(s)

)
ds

�2(u)(t) =
∫ t

0
a · �K(t − s) ∗ (|u(s)|q−1u(s)) ds

�(u) = �1(u)(t) +�2(u)(t)

whereK(t) = (4πt)−N/2 exp(−|x|2/4t) is the heat kernel, and ∗ is convolution.
We first prove the existence of solutions of the corresponding integral equation

u(t) = K(t) ∗ u0 +�(u) = �(u). (8)

Then by argument of regularity and uniqueness of the solution, we have

Theorem 2. Let 1 � s � ∞ and u0 ∈ Ls(RN) ∩ Lσ (RN) be given.

(1) If 1 � s < ∞, 1 � r < 1 + 2 min{s, σ }/N and 1 � q � 1 + min{s, σ }/N or
1 < s < ∞, r = 1 + 2 min{s, σ }/N and 1 � q � 1 + min{s, σ }/N , then there exist a
T > 0 and a unique classical solution u of (1) in (0, T )× RN such that

‖u(t)‖σ , ‖u(t)‖s , t N2s (1− 1
r )‖u(t)‖sr , t

N
2s

(
1− 1

q

)
‖u(t)‖sq

are bounded in (0, T ) and u(t) converges to u0 in the Ls-norm as t → 0+; if s = ∞, for
any p � 0, r, σ � 1, p + r > 1, there is a T > 0 and a unique classical solution u of (1)
in (0, T )× RN such that u(t) converges almost everywhere to u0 as t → 0+.

(2) Fix s satisfying the conditions in (1). Then either the solution u exists for all time t > 0 in
Ls(RN) ∩ Lσ (RN) or there exists a maximal time of existence 0 < Tmax < ∞ such that

lim
t→T −

max

(‖u(t)‖s + ‖u(t)‖σ ) = ∞

(3) If u0 is non-negative, then so is the solution u.
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Proof. We give only the partial proof of the theorem, stressing the difference between the
proof of theorem 2.1 of [8] and ours.

(1) Consider the case 1 � s < ∞. Choose R > 0 such that for all t > 0

‖K(t) ∗ u0‖σ < R ‖K(t) ∗ u0‖σ < R

t
N
2s (1− 1

r )‖K(t) ∗ u0‖sr < R t
N
2s

(
1− 1

q

)
‖K(t) ∗ u0‖sq < R.

Since

‖K(t) ∗ u0‖σ � ‖u0‖σ ‖K(t) ∗ u0‖s � ‖u0‖s
and

t
N
2s (1− 1

m )‖K(t) ∗ u0‖sm < C‖u0‖s
form = r or q, we can take R as a positive constant multiple of max{‖u0‖σ , ‖u0‖s}.

First suppose that r < 1 + 2 min{s, σ }/N, q < 1 + min{s, σ }/N . Given T > 0, let

E =
{
u : [0, T )× RN → R : ‖u(t)‖σ � 2R, ‖u(t)‖s � 2R,

t
N
2s (1− 1

r )‖u(t)‖sr � 2R, t
N
2s

(
1− 1

q

)
‖u(t)‖sq � 2R,∀t ∈ (0, T )

}
.

E is a complete metric space for the distance defined by the above expressions. If u, v ∈ E, it
easily follows that

‖�(u)‖σ , ‖�(u)‖s , t
N
2s (1− 1

r )‖�(u)‖sr , t
N
2s

(
1− 1

q

)
‖�(u)‖sq (9)

are bounded by

R + C
(
Rp+rT

1− N(r−1)
2 min{σ,s} + |a|RqT 1

2 − N(q−1)
2 min{σ,s}

)
for some constant C > 0. Similarly, the quantities �(u) in (9) evaluated for the difference
�(u)−�(v) are bounded by a constant times

Rp+r−1T
1− N(r−1)

2 min{σ,s} sup
0<t<T

t
N
2s (1− 1

r )‖u− v‖sr + |a|Rq−1T
1
2 − N(q−1)

2 min{σ,s} sup
0<t<T

t
N
2s

(
1− 1

q

)
‖u− v‖sq .

We then take T > 0 small enough so that � is a contraction on E, and therefore it has a fixed
point u which is a mild solution of (1).

Now suppose r < 1 + 2 min{s, σ }/N, q = 1 + min{s, σ }/N . For T , b > 0, we define

E =
{
u : [0, T )× RN → R : ‖u(t)‖σ � 2R, ‖u(t)‖s � 2R, t

N
2s (1− 1

r )‖u(t)‖sr � 2R,

t
N
2s

(
1− 1

q

)
‖u(t)‖sq � b,∀t ∈ (0, T ), lim

t→0+
t
N
2s

(
1− 1

q

)
‖u(t)‖sq = 0

}
.

We estimate as before and remark that

lim
t→0+

t
N
2s

(
1− 1

q

)
‖K(t) ∗ u0‖sq = 0

we can take appropriate T , b such that � is a contraction on E. �

The remainder of the proof is similar to that of theorem 2.1 of [8], so we omit it.



2496 D Peng and Z Wang

3. Global solutions

Lemma 1 [8, lemma 3.1; 14, proposition 1]. Let v0 ∈ L1(RN)∩Lm(RN)(1 � m � ∞) be a
non-negative function, v0 �≡ 0, λ > 0 and q � 1. Then there exists a unique, positive solution
v of

vt −�v = (1 + t)λa · � (vq) (10)

such that v(0, x) = v0(x),

v ∈ C((0,∞);W 2,m(RN)) ∩ C1((0,∞);Lm(RN)) ∩ C([0,∞);Lm(RN)),m ∈ [1,∞]
(11)

‖v(t)‖m � C0‖v0‖1(1 + t)−
N
2 (1− 1

m ) m ∈ [1,∞)

for a constant C0 and

‖v(t)‖∞ � C1(‖v0‖1 + ‖v0‖∞)(1 + t)−N/2 + C2‖v0‖q1(1 + t)λ+ 1−Nq
2 (12)

for some constants C1 and C2. If moreover 1 < q < 2, then there exists a constant C3 such
that

‖v(t)‖∞ � C3(‖v0‖1 + ‖v0‖∞)(1 + t)−
N+1
2q − λ

q . (13)

Lemma 2. Let u(t, x), v(t, x) ∈ C1((0, T )×RN) be non-negative functions, u(t, ·), v(t, ·) ∈
H 2(RN) ∩ Lσ (RN) ∩ Lr(RN) ∩ L∞(RN),�u(t, ·),�v(t, ·) ∈ L1(RN)(0 < t < T ). If


ut −�u �

(∫
RN
u(t, x)σ dx

)p/σ
ur + a · � (uq) t > 0, x ∈ RN

vt −�v �
(∫
RN
v(t, x)σ dx

)p/σ
vr + a · � (vq) t > 0, x ∈ RN

u(0, x) � v(0, x) x ∈ RN
then for all (t, x) ∈ (0, T )× RN , we have

u(t, x) � v(t, x).

Proof. Subtracting the inequalities satisfied by u, v, we get

(v − u)t −�(v − u) � ‖v‖pσ vr − ‖u‖pσ ur + a · � (vq − uq).

Let $(t) = {x ∈ RN : v(t, x) > u(t, x)}. We have from an argument in [8, lemma 2.2]

d

dt

∫
$(t)

(v − u) dx �
∫
$(t)

[‖v‖pσ vr − ‖u‖pσ ur
]

dx

=
∫
$(t)

[‖v‖pσ (vr − ur) + ur
(‖v‖pσ − ‖u‖pσ

)]
dx.

Since

‖v‖pσ − ‖u‖pσ � p

σ
‖θ1v + (1 − θ1)u‖p−σ

σ σ

∫
RN

[θ1v + (1 − θ1)u]σ−1(v − u) dx

� p‖θ1v + (1 − θ1)u‖p−σ
σ ‖θ1v + (1 − θ1)u‖σ−1

∞

∫
$(t)

(v − u) dx

where θ1 = θ1(s) ∈ (0, 1), then
d

dt

∫
$(t)

(v − u) dx � ‖v‖pσ
∫
$(t)

r[θ2v + (1 − θ2)u]r−1(v − u) dx + p‖θ1v

+ (1 − θ1)u‖p−σ
σ ‖θ1v + (1 − θ1)u‖σ−1

∞

∫
$(t)

(v − u) dx
∫
$(t)

ur dx

� C

∫
$(t)

(v − u) dx.
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where θ2 = θ2(s) ∈ (0, 1), C = r‖v‖pσ (‖v‖∞ + ‖u‖∞)r−1 + p‖u‖rr (‖v‖σ + ‖u‖σ )p−σ (‖v‖∞ +
‖u‖∞)σ−1. We remark that for t = 0,

∫
$(t)
(v−u) dx = 0, by applying Gronwall’s inequality,

we obtain ∫
$(t)

(v − u) dx = 0 0 < t < T .

By the continuity of u, v we get the result of this lemma. �

We are now ready to state the theorem on the existence of global solutions.

Theorem 3. Suppose for r = 1, p > 2/N + p/σ and q � 1, for r > 1, p + r >
1 + 2/N + p/σ and q � 1; or 1 + p/σ + (3 − r)N < p + r � 1 + 2/N + p/σ and
1 < q < (N + 1)(r − 1)/[2 − Np(1 − 1/σ)]. There exists a constant C > 0 such that if
u0 ∈ L1 ∩ L∞ ∩ Lσ is a non-negative function satisfying

‖u0‖1 + ‖u0‖∞ + ‖u0‖σ � C

then the unique solution of (1) is global.

Proof. Let U(t, x) = (1 + t)λv where λ > 0 will be fixed later and v is a solution of

vt −�v = (1 + t)λ(q−1)a · � (vq) v(0, x) = u0(x). (14)

We shall prove that if ‖u0‖1 + ‖u0‖∞ + ‖u0‖σ is small enough, then U is a supersolution of
(1). We have

Ut −�U = a · � (Uq) + λ(1 + t)λ−1v.

Therefore, it will be enough to show that

λ(1 + t)λ−1v � (1 + t)λ(p+r)

(∫
RN
vσ (t, x) dx

)p/σ
vr . (15)

For r = 1, we know from (15) that if(∫
RN
vσ (t, x) dx

)p/σ
� λ(1 + t)−1−λp

then U is a supersolution of (1). From (11), we have(∫
RN
vσ (t, x) dx

)p/σ
�

[
C0‖u0‖1(1 + t)−N(1−1/σ )/2

]p
.

Set [
C0‖u0‖1(1 + t)−N(1−1/σ )/2]p � λ(1 + t)−1−λp. (16)

From the condition
2

N
+
p

σ
< p

we can choose λ > 0 such that
Np

2

(
1 − 1

σ

)
> 1 + λp.

Then (16) holds for some λ > 0 and t large.
For t in the neighbourhood of zero and the λ > 0 taken previously, it is enough to choose

‖u0‖1 + ‖u0‖∞ + ‖u0‖σ small (then C0‖u0‖1 small) such that (16) holds.
For r > 1, from (11) we know that if

λ(1 + t)λ−1v � (1 + t)λ(p+r) [C0‖u0‖1(1 + t)−N(1−1/σ )/2]p vr
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or equivalently

v � λ1/(r−1)(C0‖u0‖1)
−p/(r−1)(1 + t)[Np(1−1/σ )/2−λ(p+r−1)−1]/(r−1) (17)

then (15) holds.
We now distinguish two different cases: 1 < q < 1 + 1/N and 1 + 1/N � q .
(i) First suppose that 1 + 1/N � q . From (12) we have

v � C1(‖u0‖1 + ‖u0‖∞)(1 + t)−N/2 + C2‖u0‖1(1 + t)λ(q−1)+(1−Nq)/2.

So, if we can choose λ > 0 such that the right-hand side of the last inequality is bounded by

λ1/(r−1)(C0‖u0‖1)
−p/(r−1)(1 + t)[Np(1−1/σ )/2−λ(p+r−1)−1]/(r−1)

then U is a supersolution of (1). For t > 0 large enough, we set λ > 0 satisfying

− 1

r − 1

[
Np

2

(
1 − 1

σ

)
− λ(p + r − 1)− 1

]
� min

{
N

2
,−λ(q − 1) +

Nq − 1

2

}
or equivalently

0 < λ � min

{
r − 1

p + r − 1

(
N

2
+

Np

2(r − 1)

(
1 − 1

σ

)
− 1

r − 1

)
(18)

r − 1

q(r − 1) + p

(
Nq − 1

2
+

Np

2(r − 1)

(
1 − 1

σ

)
− 1

r − 1

)}
.

We remark that 1 + 1/N � q , that is, (Nq − 1)/2 � N/2, and we have

Nq − 1

2
+

Np

2(r − 1)

(
1 − 1

σ

)
− 1

r − 1
� N

2
+

Np

2(r − 1)

(
1 − 1

σ

)
− 1

r − 1
.

On the one hand, the condition

p + r > 1 +
2

N
+
p

σ
r > 1

implies

N

2
+

Np

2(r − 1)

(
1 − 1

σ

)
− 1

r − 1
> 0.

On the other hand, if

r − 1

q(r − 1) + p

(
Nq − 1

2
+

Np

2(r − 1)

(
1 − 1

σ

)
− 1

r − 1

)

<
r − 1

p + r − 1

(
N

2
+

Np

2(r − 1)

(
1 − 1

σ

)
− 1

r − 1

)
then we can prove that

q <
σ(p + r + 1) +Np

2σ +Np
.

We remark that q � 1 + 1/N , then we have

σ(p + r + 1) +Np

2σ +Np
> 1 +

1

N
.

Furthermore, we have

p + r > 1 +
2

N
+
p

σ
.
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Therefore, using the conditions of our theorem, we confirm that when 1 + 1/N � q , the case
p + r � 2/N + p/σ + 1 will not occur. So in the range of p, q, r, σ given by the theorem, the
right-hand side of (18) is strictly positive. Thus there exists λ > 0 satisfying (18).

For t in the neighbourhood of zero and the λ > 0 taken previously, it is enough to choose
‖u0‖1 + ‖u0‖∞ + ‖u0‖σ small such that (17) holds.

(ii) Now suppose 1 < q < 1 + 1/N . Since 1 < q < 2, from (13) we have

v � C3(‖v0‖1 + ‖v0‖∞)(1 + t)−
1+λ(q−1)

q
− N−1

2q . (19)

Arguing as before, we shall prove that U is a supersolution of (1). We first choose λ > 0 such
that

− 1

r − 1

[
Np

2

(
1 − 1

σ

)
− λ(p + r − 1)− 1

]
� 1 + λ(q − 1)

q
+
N − 1

2q

or equivalently

0 < λ � q(r − 1)

pq + r − 1

[
N + 1

2q
+

Np

2(r − 1)

(
1 − 1

σ

)
− 1

r − 1

]
. (20)

Since 1<q < 1+1/N , it is easy to see that (N +1)/2q >N/2. So, if p+r > 1+2/N +p/σ , or
if 1+p/σ +(3−r)/N <p+r � 1+2/N +p/σ and 1<q < (N +1)(r−1)/[2−Np(1−1/σ)],
then

N + 1

2q
+

Np

2(r − 1)

(
1 − 1

σ

)
− 1

r − 1
> 0.

Therefore, there exists λ satisfying (20), that is, (17) holds for some λ > 0 and t large.
For t in the neighbourhood of zero and the λ > 0 taken previously, it is enough to choose

‖u0‖1 + ‖u0‖∞ + ‖u0‖σ small such that (17) holds. The proof is complete. �

Remark 1. Let
N + 1

2q
+

Np

2(r − 1)

(
1 − 1

σ

)
− 1

r − 1
> 0

we have

p + r > 1 +
p

σ
+

2

N

[
1 +

(Nq −N − 1)(r − 1)

2q

]

= 1 +
p

σ
+

2

N
+
(Nq − N − 1)(r − 1)

Nq
.

We remark that the function

h(q, r) = (Nq −N − 1)(r − 1)

Nq

satisfies h(q, 1) = 0 and ∂h/∂q > 0, (r > 1, q > 1), thus

h(q, r) > h(1, r) = 1 − r

N
.

We recall that when r > 1, q � 1 + 1/N we have min{0, (Nq −N − 1)(r − 1)/(Nq)} = 0,
and when r > 1, 1 < q < 1 + 1/N we have min{0, (Nq − N − 1)(r − 1)/(Nq)} =
(Nq−N − 1)(r− 1)/(Nq); therefore, theorem 3 can also be stated as the following theorem.

Theorem 3′. Suppose q > 1 and

p + r > 1 +
p

σ
+

2

N
+ min

{
0,
(Nq −N − 1)(r − 1)

Nq

}
. (21)
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There exists a constant C > 0 such that if u0 ∈ L1 ∩ L∞ ∩ Lσ is a non-negative function
satisfying

‖u0‖1 + ‖u0‖∞ + ‖u0‖σ � C

then the unique solution of (1) is global.

Remark 2. If p = 0, then the results of theorem 3′ coincide with that of theorem A.

4. Blow-up

In this section, we state and prove the blow-up results announced in the introduction for positive
solutions of (1). Throughout, u will denote a positive, regular solution of (1) in [0, T )× RN

with initial value u0 non-negative and not identically zero. By regularity [8, 15, 16], we may
assume that u0 is a smooth function and for a constant α > 0, 0 � u0(x)� ‖u0‖∞ e−α|x|2 .
Also, we assume that q � 1, since the case q = 1 can be reduced to the known results for (7)
by a simple change of variables.

First we give the following lemma which is the so-called inverse form of Hölder inequality.

Lemma 3 [17]. Suppose 0 < θ < 1, θ ′ = θ/(θ − 1), f ∈ Lθ(RN), 0 <
∫
RN

|g(x)|θ ′
dx < ∞.

Then ∫
RN

|f (x)g(x)| dx �
(∫

RN
|f (x)|θ dx

)1/θ (∫
RN

|g(x)|θ dx

)1/θ ′

. (22)

Lemma 4 [8, Lemma 4.1] . Let f and g be positive C1 real functions defined on [0, T ) such
that

f ′(t) � C[gp(t)− F(g(t))] f (t) � g(t) t ∈ [0, T )

where p > 1, C is a positive constant and F is a continuous function defined on [0,∞) that
satisfies the following conditions:

(1) r−pF (r) is decreasing;
(2) there exists r0 > 0 such that rp − F(r) > 0 for all r > r0. Then T < ∞ whenever

f (0) > r0.

Theorem 4. Let 1 < q � σ(p + r)/(p + σ). Then for some λ > 0 (0 < λ < 1/(2K|a|) if
p = 0, 1 < q = r)

∫
RN
u0(x)φ(λx) dx >




max
{

2
1

p+r−1 λ
2

p+r−1 −N
, (2K|a|) 1

p+r−q λ
1

p+r−q −N
}

p > 0 1 < q � σ (p+r)
p+σ

max
{

2
1
r−1 λ

2
r−1 −N, (2K|a|) 1

r−q λ
1
r−q −N

}
p = 0 1 < q < r

2
1
r−1 λ

2
r−1 −N p = 0 1 < q = r

(23)

then u blows up in finite time, where φ(x) is given by (5).

Proof. Suppose u is a global solution of (1). Let us define for λ > 0

φλ(x) = λNφ(λx)

and

f (t) =
∫
RN
u(t, x)φλ(x) dx g(t) =

(∫
RN
uσ(p+r)/(p+σ )(t, x)φλ(x) dx

)(p+σ )/[σ (p+r)]

.
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Then∫
RN
φλ(x) dx = 1 �φλ(x) � −λ2φλ(x) |� φλ(x)| � Kλφλ(x) (24)

and, from Hölder’s inequality

f (t) � g(t).

Multiplying the equation in (1) by φλ(x), integrating over RN and using (24), we have

d

dt

∫
RN
uφλ dx =

∫
RN
�uφλ dx +

∫
RN

(∫
RN
uσ dx

)p/σ
urφλ dx +

∫
RN

a · � (uq)φλ dx

=
∫
RN
�uφλ dx +

(∫
RN
uσ dx

)p/σ ∫
RN
urφλ dx +

∫
RN
uaa · � φλ dx

�
(∫

RN
uσφλ dx

)p/σ ∫
RN
urφλ dx − λ2

∫
RN
uφλ dx − λK|a|

∫
RN
uqφλ dx.

(25)

In lemma 3, we take

f (x) = uσ−sφ1/θ
λ g(x) = usφ

1/θ ′
λ

where θ = p/(p + σ), θ ′ = −p/σ, s = −σr/p. From the result of lemma 3, we have(∫
RN
uσφλ dx

)p/σ
=

(∫
RN

(
uσ−sφ1/θ

λ

) (
usφ

1/θ ′
λ

)
dx

)p/σ

�
(∫

RN
uθ(σ−s)φλ dx

)p/σθ (∫
RN
uθ

′sφλ dx

)p/σθ ′

=
(∫

RN
uσ(p+r)/(p+σ )φλ dx

)(p+σ )/σ (∫
RN
urφλ dx

)−1

.

Substituting the last inequality into (25) we get

d

dt

∫
RN
uφλ dx �

(∫
RN
uσ(p+r)/(p+σ )φλ dx

)(p+σ )/σ

− λ2
∫
RN
uφλ dx − λK|a|

∫
RN
uqφλ dx.

(26)

First we suppose p > 0, 1 < q � σ(p + r)/(p + σ). We remark that q < p + r , using
Hölder’s inequality in (26), we have

d

dt

∫
RN
uφλ dx �

(∫
RN
u
σ(p+r)
p+σ φλdx

) p+σ
σ

− λ2
∫
RN
uφλ dx − λK|a|

×
(∫

RN
u
σ(p+r)
p+σ φλ dx

)q(p+σ )/[σ (p+r)]

.

That is,

f ′(t) � gp+r (t)− λ2f (t)− λK|a|gq(t)
� gp+r (t)− λ2g(t) − λK|a|gq(t).

We remark that f (0) = ∫
RN
u0(x)φλ(x) dx > 0, and from the proof of lemma 4 (cf [8,

lemma 4.1]) we know that if

f p+r (0)− (λ2f (0) + λK|a|f q(0)) > 0 (27)
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then f blows up in finite time. The last condition is satisfied if∫
RN
u0(x)φλ(x) dx > max

{
2

1
p+r−1 λ

2
p+r−1 , (2K|a|) 1

p+r−q λ
1

p+r−q
}

or equivalently if∫
RN
u0(x)φ(λx) dx > max

{
2

1
p+r−1 λ

2
p+r−1 −N

, (2K|a|) 1
p+r−q λ

1
p+r−q −N

}
. (28)

Hence, u cannot be global, thus proving the theorem whenp> 0 and 1<q � σ(p + r)/(p + σ).
Now suppose thatp = 0. Problem (1) is equivalent to that studied in [8]. From theorem 4.2

of [8], if for some λ > 0 (0 < λ < 1/(2K|a|) if p = 0, 1 < q = r)∫
RN
u0(x)φ(λx) dx >

{
max

{
2

1
r−1 λ

2
r−1 −N, (2K|a|) 1

r−q λ
1
r−q −N

}
p = 0, 1 < q < r

2
1
r−1 λ

2
r−1 −N p = 0, 1 < q = r.

(29)

then u blows up in finite time, where φ(x) is given by (5). Using (28) and (29) we complete
the proof. �

Corollary 1. If

p > 0 r > 1 σ � 1 p �= σ 1 + 1/N � q � σ(p + r)/(p + σ) p + r < 1 + 2/N

then (1) cannot have nontrivial non-negative global solutions.

Proof. We remark that p + r < 1 + 2/N � q + 1/N , let λ → 0+ in (28), the left-hand side
converges to �

φ(0)
∫
RN
u0(x) dx > 0

while the right-hand side converges to zero. Therefore, we can take λ > 0 so small that
condition (28) holds, completing the proof.
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